
An Integrated CI/CD Workflow 
for eXecutable Domain-Specific 

Modelling Languages
DevOps Oct. 2021

Nicolas Hili <nicolas.hili@univ-grenoble-alpes.fr>



Example: Chess

/whitePieces =
self.pieces->select(p | p.color = #white)

[0..16]

Piece

- row: int
- col: int
- canLeap: bool = false
- color: Color

pieces [0..32]

chessboard[1]

Chessboard

- turn: Color

<<enum>>
Color

WHITE = "white"
BLACK = "black"

Pawn Knight

- canLeap: bool = true

...

2



Example: Chess

picked[0..1]pieces [0..32]

chessboard[1]

Chessboard

- turn: Color

+ pick(row: int, col: int)
+ move(row: int, col: int)
+ release()
+ capture(piece : Piece)

Piece

…

+ canMove(row: int, col: int)
+ move(row: int, col: int)

What would be the specification of the function
canMove(row: int, col: int)?

The piece is moved according to its movement rules

Return TRUE if:

Return FALSE otherwise

The destination is on the board and unoccupied

and

The destination is occupied by an opponent's piece

or

Every cell b/w the current location and the destination is empty

and

The piece can leap

or

The player's king will not be in check at the end of the turn

and

3



Test-Driven Development

Test case #3: pawn can move one square one its first move

Test case #4: pawn can move one square on subsequent moves

Test case #5: pawn can move diagonally to capture

Test suite #2: ...

Test suite #1: pawn moving

Test case #2: pawn can move two squares on its first move

Test case #1: pawn can only move forward or diagonally

Description: on its first move a pawn can advance two squares along the same 

file, provided both squares are unoccupied.

Initial model state: Operation context: 'White Pawn 3'

Operation name: 'move' Operation parameters: [0, 0]

Expected model state: Expected operation result: true

...

4



FlexiMeta

5



GitLab workflow

6Figure adapted from https://docs.gitlab.com/ee/ci/introduction/


