———

An Integrated CI/CD Workflow
for eXecutable Domain-Specific

Modelling Languages
DevOps Oct. 2021

Nicolas Hili <nicolas.hili@univ-grenoble-alpes.fr>

/N\ Université Grenoble Alpes

<<enum>>
° Chessboard Color
Example: Chess
- turn: Color WHITE = "white"
[1] @ chessboard BLACK = "black"
. /whitePieces =
preces [0"32] [O"16] self.pieces->select(p | p.color = #white)
Piece
- row: int
- col:int
- canLeap: bool = false
- color: Color
P
Pawn Knight

- canLeap:bool = true

Example: Chess

Return TRUE if:

Chessboard

- turn: Color

+ pick(row: int, col: int)
+ move(row: int, col: int)
+ release()

+ capture(piece : Piece)

[1] ¥ chessboard

pieces | [0..32] [0..1] | picked

Piece

+ canMove(row: int, col: int)
+ move(row: int, col: int)

The piece is moved according to its movement rules

The destinationis on the board and unoccupied
or

The destinationis occupied by an opponent's piece

Every cell b/w the current locationand the destinationis empty
or
The piece canleap
and
The player's king will not be in check at the end of the turn

Return FALSE otherwise

What would be the specification of the function
canMove (row: int, col: int)?

Test-Driven Development

Test suite #1: pawn moving

Test case #1: pawn can only move forward or diagonally

Test case #2: pawn can move two squares on its first move

: on its first move a pawn can advance two squares along the same
file, provided~RQoth squares are unoccupied.

Initial model state: Operation context: 'White Pawn 3'
Operation name: 'move' Operation parameters: [0, O]
Expected model state: = Expected operation result:

Test case #3: nGwn can move one square one its first move

Test case #4: pawn can move one square on subsequent moves

Test case #5: pawn can move diagonally to capture

Test suite #2: ...

FlexiMeta

DevOps Experiment

Test suites

E Meodel Explorer

~ 3 chessboard Q
» pieces (32)
~ whitePieces (16)
» A White pawn 1
» A White pawn 2
» A White pawn 3
£ White pawn 4
£, White pawn 5
£ White pawn 6
&
&

P Move bishop

> Move pawn

Black cannot move backward

Cannot move pawn forward 2 squares after first move

White pawn 7
White pawn 8
I White rook 1
» &\ White knight 1
» & White bishop 1
¥ W White queen
» fx canMove(row, col)
» fx move(row, col)
» fx canPass(row, col)
» fx canland(row, col)
» fx canMove(row, col)
» & Whiteking
» & White bishop 2
» &) White knight 2
» I White rook 2
» blackPieces (16)
» fx getPiece(row, col)
» fx pickirow, col)
» fx move(row, col)
X release()
» fx capture(piece)

»
»
»
»
3 Move black pawn forward 1square
»

Move pawn forward 1 square

Move pawn forward 2 squares from initial row

White cannot move backward

VVV < < K

P Pick

6 Execution Engine

3 3 "

v « Property Panel
w
o
5| Z al17e7bf-ace6-415a-a0af-7575b3d0a176 O canleap
white - 6 <

CiitLab workflow

Model quality
Model linting
Model coverage
Unit testing

Merge request
& approval

Push

Gitlab-CI Gitlab-Cl

a b4
Create Create . | Merge
issue branch Continuous Integration

Figure adapted from https://docs.gitlab.com/ee/ci/introduction/

